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RHEOLOGICAL EQUATIONS OF STATE OF A DILUTE SUSPENSION 

OF DIPOLE DUMBBELLS IN A POWER-LA~ LIQUID 

E. Yu. Taran UDC 532.135:541.182 

We obtain the theological equations of state of dilute suspensions of dipole dumb- 
bells in a power-law liquid. As an example, we consider simple shear flow of such 
a medium in an electric field. 

In the present paper we consider a dilute suspension of rigid axially symmetric particles 
in a power-law liquid whose rheological equation of state has the form 

n--| 

�9 ~j = - - p 6 ~ j  § 2 m l2dk~d, .~[  ~-  d~:. (1) 

For n < i this model describes pseudoplastic liquids, while for n > i it describes dilatant 
liquids. The case n = i corresponds to Newtonian behavior. 

We assume that the dispersion medium interacts with the suspended particles which have 
zero buoyancy as with hydrodynamic bodies. As a hydrodynamic model of the suspended par- 
ticles, we consider the model of a rigid point dumbbell: At a distance L equal to the length 
of the real axially symmetric suspended particle there are point centers of hydrodynamic in- 
teraction of the model with the surrounding liquid. As for suspensions in Newtonian liquids, 
we assume that the ends of the dumbbell interact with a power-law dispersion medium like 
spheres of radius a. 

We consider the Stokes approximation for flow past suspended particles. It is known 
that the coefficient of frictional resistance of a sphere of radius a m." ring with a transla- 
tional velocity U is given in the Stokes approximation by the formula [i]: 

nq-1 

(12) 2 un-la 2-n. 
= 4~ --~ F ( n ) m  (2) 

The function F(n) has been tabulated in [2]; in particular, for n = i (a Newtonian liquid), 
~ = 6~rma. 

The suspended axially symmetric particles may have a constant dipole moment Pc = qn or 
an induced dipole moment Pe = ~ n(E.n). The interaction between the electric fields of the 
suspended particles, like the hydrodynamic interaction between the particles, is disregarded. 

Since the hydrodynamic model of the particles is so simple, the determining equation for 
the vector n characterizing the orientation of the dumbbell can be determined by using a 
structural approach. 

Suppose that the length of the suspended dumbbells is such that the velocity of the dis- 
persion medium within the limits of a particle is a homogeneous function of the coordinates. 
Then by the first Helmholtz theorem [3], the velocity of the liquid at the point where the 
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Fig. i. Laboratory system of coor- 
dinates, the origin of which coin- 
cides with the midpoint of the L 
axis of the dumbbell AA'. 

point center A of the hydrodynamic interaction of the dummbbell with the surrounding liquid 
is situated will be 

L L 
vi = -{ dik nk + ~ ~i~ n~ 

Since the frictional force resulting from flow past end A of the particle in the direc- 
tion of the L axis is compensated by the action of the force applied to end A', which is sym- 
metric with respect to the origin, it follows that the relative velocity vie of flow past 
end A of the dumbbell has the following components: In the direction of the L axis 

, L 
Vto= --2- dhm nk nm n~ 

2 

and perpendicular to that axis 

o' i ~o = - ~  (d~knh - -  d~,~nhn,~n~ - -  N i ) ,  

(3) 

(4) 

where N i = ~i-- ~iknk. The frictional forces resulting from the flow past the ends of the 
particle with velocity vlo give rise to the rotational moment Mg = L[n • F], where F i = ~Vlo 
is the frictional force acting on one end of the particle. The resistance coefficient ~, 

n--I 

according to (2), will be ~=~(n)m~2-n[(o~)z+(v;0) z] 2 or, taking account of (3), (4) 

n--I 

= ~(n)ma~_  ~ .-1 [NiN~--2dl~n~N~ + d~hdijnhnjl 2 , (5) 

where 
n+! 

~(n)=4~ (l~z)2 F(n). 

After vector multiplication by n i of the equation of motion of the suspended dumbbell 

dL 
= Mg, (6) 

dt 

where L = I[~ x 6], we obtain the determining equation for the vector ni: 

I 
I (n, + ~n~n~) = - ~  ~L ~ (dmnk - -  dh~nhnmni - -  Ni).  (7) 

If the suspended particles have a constant dipole moment Pc = qn, then in the right side 
of Eq. (6), when there is an external uniform electric field with intensity E, we must take 
account of the moment of the electrical forces M c = q[n • E] acting on the particle. In this 
case the determining equation for the vector n i has the form 

I 
I (n~ + h~hhn~) = i f -  ~L z (d~kn h --dhmnhnmn, - -  N~) + q (E i - -  nhEhn,). (8) 

If the suspended particles represented by dumbbells in the model do not have a constant 
dipole moment but have dielectric susceptibility, then in Eq. (6) we must take account of the 
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following moment of the electrical forces: M e = ~(E,n)[n x E]. The determining equation 
for n i in this case will be 

1 
I (n~ q- hjzknO = -2- ~Lz (dihn~ - -  dr~mnhnmn~ - -  N~) q- zEhn h (E~ - -  nhE~n~). ( 8 '  ) 

In order to obtain the determining equation for the stress tensor in the medium under 
consideration, we shall make use of the structural-phenomenological approach of [5]. 

In choosing the phenomenological equation of state for the stress tensor, we make use 
of the fact that the expression for the rate of dissipation of energy per unit volume of the 
suspension is Es=Ep+[2N ~ < ~[(V~o)Z+(V~o) 2] >, where the averaging is carried out by means of 
the distribution function F(ni) for the 
determined from the equation 

OF 

Ot 

has the same form 

1 
E . =  E v + No < -{ 

axes of the particles according to angular position, 

- -  -~- (Fni) = O, ( 9 )  

~L z (N~N~ - -  2 d~jNin J -6 di~danfh) > (lo) 

for a Newtonian [4] and for a power-law dispersion medium. The difference lies in the fact 
that for a Newtonian dispersion medium the rheological diameter W = x/2~L 2 -- the coefficient 
of rotational friction of the dumbbells -- is a constant, while for a power-law dispersion 
medium, as can be seen from (5), it is a function of the invariants 

NiN ~, dihnhN~, d~dijnhn i. (Ii) 

Therefore the stress tensor in the suspension under consideration must be determined from 
a relation of the form T u ="cii § N O < tij ), tij = tij (dk.. he, N~) , where the averaging is carried 
out with the aid of the distribution function F(ni), the solution of Eq. (9); Tij, as in a 
Newtonian dispersion medium [4], is a linear function of the tensor dhn, i.e., 

Tij = "q~ -{- No ( ( al > dlj + < azn~nj > +- dk.~ < azn~n~n~nj > q- 

-q-dik ( a~nhnj > + d~j ( asnkn i > -+',- ( a6niN j > + < aTNin ~ > ), 

but the phenomeno!ogical parameters a i (i = i, 2, ..., 7) depend on the invariants (ii). 

The phenomenological rheological parameters a i are found, as in [4], by a comparison of 
the rate of dissipation of energy per unit volume of suspension, determined in a manner anal- 
ogous to [6] by the formula E s = T i i d i i - - N  o (gins), with the expression (i0) obtained on the _ 
basis of the structural theory, assuming that T''~l--T..13 = N~ > [6], where gi= I/2~L~(diknk - 
dkmnknmni -- N i) is the right side of the determlning equation (/). A check will show that 
the stress tensor obtained in this way, 

n--1 

1 ~t  z (dmnkn J _ Nin~ ) >, Tij  = - -  psi1 -~ 2m] 2dhrndrn h I -y- di] A- L N O < ~ (12) 

has the same form if the orientation of the suspended particles is determined not only by the 
hydrodynamic forces (7) but also by the electrical field (8), (8'). 

As an example, we can consider the simple shear flow 

v~ = O, vu'= Kx, Vz= O, K = const  ( 1 3 )  

of a medium with dipole particles when there is an electric field with intensity 

E~ = E, E v ~- O, E z =  0, E = const ,  ( 1 4 )  

neglecting the moment of inertia of the suspended particles (I = 0). 

Passing to spherical coordinates n x = cos @ sin| ny = sin @ sin| n z = cos | (Fig. 
!), we find from (8) that the components of the angular velocity of the particle m($, $) are 
determined by the relation 

~P = K cosZq ) - -  qE sin qo 
W sin 0 '  ( 1 5 )  
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Fig. 2. "Hovering" angle @, in de- 
grees, of the dumbbell as a function 
of u (the dumbbell "hovers" in the 
shear plane). The dashed curve cor- 
responds to a Newtonian dispersion 
medium (n = I). 

qf cos ~cos | (16) = K4 sin 2~ sin 20 § W 

The solution of Eq. (15) for E = 0 is @ = arctan(Kt + C). For E = 0 we divide Eq. (15) 
by (16) and integrate to obtain (cos @)-i = Ci tan| From the solutions obtained it fol- 
lows that as t § =, @ § v/2, | § v/2, i.e., when there is no electric field, the motion of 
the suspended dumbbell is not periodic, and for sufficiently large values of t it will be 
oriented along the axis Oy. 

A constant electric field with the intensity vector (14) will bring the particle out of 
this situation; it will take on an angular position in the shear plane such that the moment 
of the electric field will be equal to the moment of the frictional forces acting on the par- 
ticle. 

This analysis enables us to conclude that Eqs. (15) and (16) have a stationary solution 
when E # 0. Since for E # 0 these equations are nonlinear, it follows that the stationary 
angular position of the parti?le (as t ~ =) can more conveniently be found not from the gen- 
eral solution but by setting ~ = ~ = 0. We find that a suspended particle is oriented in the 
plane xOy (| = ~/2) at an angle ~ with respect to the axis Ox determined by the equation 

,+__l 

~(cos2 ~) 2 --sin~ = 0, (17) 

where 

(~_--. 
qE 

is a dimensionless parameter. For n = i (a Newtonian dispersion medium) a = WK/qE, and Eq. 
(17) can be solved analytically: ~ = arcsin (1/2u)(--1 + /1 + 4uz); for n < 1 and n > 1 we 
can solve it numerically (Fig. 2). 

From the foregoing results it can be seen that since the suspended dipole particles, ir- 
respective of their initial orientation in stationary flow and under the action of a sta- 
tionary electric field, take on the same constant angular position as t -~ =; it follows that 
in determining the steady-state stress condition in the suspension in this case we do not 
need to carry out the averaging in (12) with respect to the angular positions of the par- 
ticles. 

From (12) and (5), for (13), (14) when ~ = ~ = 0, O = w/2, we find 

n-~-I 

T ~ = -  T~z = O, 

(18) 

(19) 
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Fig. 3. Variation of m a = (m a -- m) (i/No~(n) (L/2) n+x| 
a 2-n) as a function of @, deg. 

Fig. 4. Variation of ~: = (Tyy- Tzz)(i/NoEq) as a 
function of ~. 

n--| 

Ty,j-- Tzz = 2Nocz (n) ma2-" ( L  ) "+l (cosZ ~p)--~- cos q~ sin ~ lKln-l K. (20)  

From (18)  i t  f o l l o w s  t h a t  t h e  medium u n d e r  c o n s i d e r a t i o n  i n  t h e  f l o w  (13)  w i t h  t h e  f i e l d  (14)  
behaves like a quasi-power-law liquid with an index of non-Newtonian behavior of the disper- 
sion medium and an effective consistency 

m a = m 1 + No~(n ) a2-~(cos2rP) ~ -  , (21)  

dependent not only on the parameters characterizing the medium (m, n, L, a, q, No) but also 
on the shear rate and the value of the intensity vector of the electric field. 

The solutions of Eq. (17) (Fig. 2) show that for some finite E, when there is no flow 
(K = 0), the suspended particles are oriented parallel to Ox. As the shear rate increases, 
the particles rotate in the plane xOy, becoming oriented parallel to the axis Oy as K § =. 

This means that, as can be seen from Fig. 3, the increment of the effective consistency 
m a --m of the medium resulting from the presence of suspended particles decreases as the 
shear rate increases. 

As can be seen from formula (20), the medium displays the Weissenberg effect (Fig. 4). 

In the absence of appropriate experimental data on suspensions in non-Newtonian liquids, 
we can only say that the nature and direction of the rheologica! behavior Of dilute suspen- 
sions of rigid axially symmetric particles in a power-law and a Newtonian dispersion medium 
are analogous and differ only quantitatively. 

The fact that a point dumbbell has no volume means, as in the case of a Newtonian dis- 
persion medium, that for suspensions of dumbbells [7, 8] and rods (the "pearl necklace" model) 
[9-11], in stationary shear flow there will be a decrease in the values of m a --m and Pa -- 
pp as K § =. This defect is absent when we have an ellipsoid of revolution, but when we use 
this as a model for the suspended particles in a power-law liquid, we find that when we ob- 
tain the rheological equations of state, we have partial differential equations, which can- 
not be solved analytically because they are strongly nonlinear. 

NOTATION 

Tij , stress tensor in power-law liquid; p, pressure; ~i~3 Kronecker delta; dij ~ defor- 
mation rate tensor; m, index of consistency of power-law liquid; n, index of non-Newtonian 
behavior of power-law liquid; q, value of constant dipole moment; n, unit vector characteriz- 
ing the orientation of a suspended axially symmetric particle in the laboratory rectangular 
Cartesian coordinate system x, y, z with origin at the midpoint of the axis of s}munetry; ~, 
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principal value of the dielectric susceptibility of the axially symmetric particle along the 
axis of symmetr.y; E, intensity vector of the electric field; mik, velocity vortex tensor; 6, 
hi, and Hi, @, | derivatives with respect to time; L, moment of inertia of dumbbell; I, mo- 
ment of inertia of dumbbell with respect to the axis passing through the midpoint of the par- 
ticle perpendicular to it; < >, symbol indicating averaging by means of distribution function; 

n--! 

Ep=2m[2dkmdm~l 2 dijdij , rate of dissipation of energy per unit volume of power-law dispersion 
medium in the absence of suspended particles; No, number of suspended particles per unit 
volume of suspension; No(tij>, stress produced by the presence of No suspended particles per 
unit volume of suspension; K, shear rate in simple shear motion; E, value of intensity vector 
of electric field; W, coefficient of rotational friction of the dumbbell; C, C,, constants 
of integration; t, time; ~a = (I/K)T(xy), effective viscosity of suspension in simple shear 
flow; ~p = mlKl n-*, viscosity of power-law dispersion medium in simple shear flow. 
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RELATION BETWEEN HOMOGENEOUS AND INHOMOGENEOUS STRETCHING 

OF AN ELASTIC FLUID 

A. N. Prokunin and N. G. Proskurnina UDC 532.5:532.135 

Homogeneous and inhomogeneous (steady) noninertial stretching of an elastic fluid 
is experimentally investigated, and a method is given for the calculation of one 
problem from experimental data on the other. 

i. Homogeneous Stretching with Constant Force 

The noninertial homogeneous stretching of cylindrical samples was first studied experi- 
mentally in [i, 2]. The experimental arrangement for stretching of this type is shown in 
Fig. la. One end of the test sample is fixed, and the other moves under the action of a con- 
stant force F. In the cylindrical coordinate system x, r,@, the velocity components are 

~(0 r; v~ = 0. (i.i) v~=• x; v~= 2 

Here x is the longitudinal coordinate measured from the point of fixing of the sample (Fig. 
la). 

On the basis of the incompressibility condition for the fluid, the sample radius is 

r ( t )  = ro~-I/2; 8 = l / ~ .  (1.2) 

Here ro and lo are the initial (t = 0) sample radius and length. Under the condition that 
the radial component of the stress tensor vanishes, and taking into account Eq. (1.2), the 
stress in the sample cross section is 

= ~ x  = F~ ~r2 = %~; % = F/~r~.  (1.3) 
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